

BIRZEIT UNIVERSITY

Electrical and Computer Engineering Computer Organization - Second Exam

Fall Semester 2014

Date: 16/12/2014
Time allowed: 60 minutes
ID:

- You have 60 minutes, budget your time carefully!
- Turn OFF your mobile phone.
- To make sure you receive credit, please write clearly and show your work.

Question	Maximum	Mark	Course Outcome
1	30		
2	20		
3	20		
4	30		
Total	100		

Question 1: [30; 2 each] (Multiple choice)

1. CPU checks for an interrupt signal during
(A) Starting of last Machine cycle
(B) During execution cycle
(C) Operand Fetch cycle
(D) Instruction fetch cycle
2. In 8086 the Overflow flag is set when
(A) The sum is more than 16 bits
(B) Signed numbers go out of their range after an arithmetic operation
(C) Carry and sign flags are set
(D) During subtraction
3. Which of the following is an illegal instruction
(A) MOV AX, [2000]
(B) MOV CS, DX
(C) MOV CS, 10000
(D) MOV DI, CX
4. Which of the following variables uses the most amount of memory:
(A) X DB 127,128
(B) Y DB $20 \operatorname{dup}(5 \operatorname{dup}(127))$
(C) Z DW 55 dup(0)
(D) small DD 20 dup(20)
5. To invert $6^{\text {th }}$ bit of Al register, we use:
(A) AND AL, 40H
(B) XOR AL, 40 H
(C) OR AL, 40H
(D) OR AL,OBFH

1 The effect of the following instructions onAX register is

7. To copy the hexadecimal number A to the BH register we write
(A) MOV $0 \mathrm{BH}, \mathrm{AH}$
(B) $\mathrm{MOV} \mathrm{BH}, \mathrm{OAH}$
(C) MOV BH, AH
(D) MOV BH, [AH]
8. Given that AL contains the ASCII code of an uppercase letter, it can be converted to lowercase by
(A) ADD AL, 32H
(B) SUB AL, 32 H
(C) OR AL, 1101 1111B
(D) $\mathrm{ADD} \mathrm{AL}, 20 \mathrm{H}$
9. The maximum segment size of an 8086 processor is
(A) 2 MB
(B) 64 KB
(C) 64 GB
(D) 1 MB
10. One of the following instruction is illegal:
(A) MOV AL, $[D X+1]$
(B) MOV [CX-1], SI
(C) MOV [BX], 255
(D) ADD AX, [1000]
11. Which register will be affected by the instruction imul $B X$
(A) DS
(B) $A X$
(C) $D x$
(D) $B X$
12. model tinny means:
(A) One segment for code, one segment for data and one segment for stack
(B) One segment for code, two segments for data, no stack
(C) One segment for code, data and stack
(D) None of the above
13. To declare (define) a matrix of 10 rows and 6 columns (10X6) of bytes we use:
(A) Matrix DB 10, 6
(B) Matrix DB $10 \operatorname{dup}(6)$
(C) Matrix DW $10 \operatorname{dup}(6 \operatorname{dup}(?))$
(D) Matrix DB 60
14. The BP register is typically used for accessing
(A) strings
(B) Extra segment
(C) stack
(D) data segment
15. Consider the byte at address 13DDE within a 64 K segment defined by segment address 10DE. What is its offset?
(A) 20E1
(B) 2 PF
(C) 2 FFE
(D) 20EF

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	B	C	C	B	B	D	B	C	B	C	D	C	C	

Question 2: [20 marks, 4 each]
Assume (all values are in hex):
$A X=0000 \quad B X=00 F 3 \quad C X=0003 \quad \mathrm{DX}=0000 \mathrm{SI}=0050 \mathrm{DI}=0000$
$C S=2000 S S=4000 \quad D S=5000 \quad E S=2000 S P=3000 B P=01 C 1$
$\mathrm{IP}=0100$
i) What is the physical address of the next instruction to be executed?

$$
C s * 10 h+I P=20000+0100=201001+
$$

ii) What is the physical address of the top of stack?

$$
\begin{aligned}
& S S * 10 h+S P \\
& 40000+3000=43000 H
\end{aligned}
$$

iii) What is the highest possible physical address of data segment?

$$
D S * 10 n+\text { FAFF }=50000+\text { FAff }=5 \text { FAFF H }
$$

vi) What is the physical address of the first operand of the following instruction?

NOV [B X+1221H], AL
DS*10h+Bx+1221H=50000+00F3+1221=51314H
v) What is the physical address of the source operand in the following instruction?

```
MOV DL, [BP+SI-2]
```

SS* $10 h+B P+5 I-2$
$40000+01 C 1+0050 \neq 0002$

$$
=4020 \mathrm{FH}
$$

Question 3: [20 marks; 4pts each]
a) Show how the AL and Flags are affected by

> MON BL; OCCH

MOL AL, OBB
-ADD AL,DL
: $\quad A L=$

$\mathrm{CF}=$
OF=
0
$z F=0$
b) What will be the value in $A L$ and the following flags after executing the following instructions? Give the answer in both hexadecimal and binary.
move al, 09 Ah
move bl, 073h
sub al, bl ;
$\mathrm{AL}=$ \qquad) $\mathrm{H}, \quad \mathrm{CF}=1$
$A F=1$
$P F=1$
c) What will be the value inA after executing the following instructions? Give the answer in hexadecimal:
.data
'VAR DW 1122h, 3344h, 5566h, 7788h, 99AAh
.code
MON BX, OFFSET VAR
MOD SI, 4
MOW AX, $[B X+S I-1]$
$A X=($ \qquad) H

| Address | |
| :---: | :---: | Memory

d) What will be the value in AX after executing the following instructions? Give the answer in hexadecimal: .data
Table DB $1 \mathrm{FH}, 2 \mathrm{EH}, 3 \mathrm{DH}, 4 \mathrm{CH}, 5 \mathrm{BH}, 6 \mathrm{AH}, \mathrm{A} 7 \mathrm{H}, \mathrm{B} 8 \mathrm{H}, 9 \mathrm{CH}$
code
NOV SI, 5
LEA BX, Table[SI]
MOW AL, 2
xlatb
MOVSX AX, AL
$A X=$ \qquad H
e) Write assembly instruction/s for enabling interrupt flag (IF)? (Hint: IF is the $9^{\text {th }}$ bit in FLAGS register).
pash
popax
ORAX, 0100H Or STI push $A x$
pope
'Question 4: [30 marks]
a) Write a procedure to count number of Zero's in register AX? [15pts]
proc 30os-count near

b) Write a procedure to reverse 10 bytes of an array addressed by register DX? [15pts]
proc Array-Reverse hear

$$
\begin{aligned}
& \text { push } 5 I \\
& \text { push } D I \\
& \text { push }<x \\
& \text { push AX } \\
& \text { Xor } S I, S I \\
& \text { Mov DI, } 9 \\
& \text { Mov } C x, 5
\end{aligned}
$$

Next: Mou $A C,[B x+5 I]$

$$
\begin{aligned}
& \text { Hov }[B x+D I], A L \\
& \text { Inc } S I
\end{aligned}
$$

$$
\begin{aligned}
& \text { Inc SI } \\
& \text { DEC DI }
\end{aligned}
$$

Loop neat

PopAx
popes
Good Luck
POPDI
5
pop 5 I
net
Encl Array-Reverse.

